Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 13(6): 581-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466963

RESUMO

Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration-a process contributing to the mobilization of As. Repeated oxidation and reduction in near-surface sediments, which contain 10-40 mg kg(-1) As, lead to the eventual downward movement of As to the underlying aquifer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental samples. However, few studies have successfully amplified arrA from sediments without prior enrichment, which can drastically shift community structure. In the present study, we examine the distribution and diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of near-surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations. We report successful amplification of 302 arrA gene sequences (72 OTUs) from near-surface Cambodian soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%) formed a well-supported clade that is phylogenetically distinct from previously reported sequences from Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter sp. in arsenic mobilization in these regions.


Assuntos
Arsênio/metabolismo , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Camboja , Oxirredução , Análise de Sequência de DNA
2.
Environ Sci Technol ; 47(19): 11241-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23941581

RESUMO

The Department of Defense (DoD) is faced with the daunting task of possible remediation of numerous soil-Cr(VI) contaminated sites throughout the continental U.S. The primary risk driver at these sites is hand-to-mouth ingestion of contaminated soil by children. In the following study we investigate the impact of soil geochemical and physical properties on the sorption and bioaccessibility of Cr(VI) in a vast array of soils relevant to neighboring DoD sites. For the 35 soils used in this study, A-horizon soils typically sorbed significantly more Cr(VI) relative to B-horizon soils. Multiple linear regression analysis suggested that Cr(VI) sorption increased with increasing soil total organic C (TOC) and decreasing soil pH. The bioaccessibility of total Cr (CrT) and Cr(VI) on the soils decreased with increasing soil TOC content. As the soil TOC content approached 0.4%, the bioaccessibility of soil bound Cr systematically decreased from approximately 65 to 10%. As the soil TOC content increased from 0.4 to 4%, the bioaccessibility of Cr(VI) and CrT remained relatively constant at approximately 4% and 10%, respectively. X-ray absorption near edge structure (XANES) spectroscopy suggested that Cr(VI) reduction to Cr(III) was prevalent and that the redox transformation of Cr(VI) increased with increasing soil TOC. XANES confirmed that nearly all bioaccessible soil Cr was the Cr(VI) moiety. Multiple linear regression analysis suggested that the bioaccessibility of Cr(VI) and its reduced counterpart Cr(III), decreased with increasing soil TOC and increasing soil pH. This is consistent with the observation that the reduction reaction and formation of Cr(III) increased with increasing soil TOC and that Cr(III) was significantly less bioaccessible relative to Cr(VI). The model was found to adequately describe CrT bioaccessibility in soils from DoD facilities where Cr(VI) contaminated sites were present. The results of this study illustrate the importance of soil properties on Cr(VI) sorption and bioassessability and help define what soil types have the greatest risk associated with Cr(VI) exposure.


Assuntos
Cromo/química , Poluentes do Solo/química , Solo/química , Adsorção , Disponibilidade Biológica , Cromo/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Modelos Teóricos , Poluentes do Solo/metabolismo
3.
Environ Sci Technol ; 35(19): 3823-9, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11642439

RESUMO

The cycling of common sorbents such as metal (hydr)- oxides, carbonates, and sulfides in redox-active environments influences the partitioning of associated trace elements such as zinc. Consequently, fluctuations in redox status may in part determine the availability and mobility of Zn and other trace elements. This research examines changes in Zn speciation in a contaminated wetland soil that undergoes seasonal flooding. X-ray absorption spectroscopy (XAS) was employed to identify and quantify Zn species from soil cores collected over a 1-year cycle as a function of water depth, location, and soil depth. Zinc associated with (hydr)oxide phases in dry, oxidized soils and with sulfides and carbonates in flooded systems. An increase in water level was accompanied by a reversible change in Zn fractionation toward ZnS and ZnC03. However, a small, recalcitrant fraction of Zn associated with (hydr)oxides remained even when the soils were exposed to highly reducing conditions. Water depth and redox potential were the most important factors in determining Zn speciation, although spatial variation was also important. These data indicate that zinc sorption is a dynamic process influenced by environmental changes.


Assuntos
Ecossistema , Poluentes do Solo/análise , Zinco/química , Desastres , Monitoramento Ambiental , Mineração , Oxirredução , Estações do Ano , Movimentos da Água
4.
Environ Sci Technol ; 35(19): 3863-8, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11642445

RESUMO

Iron plaque on aquatic plant roots are ubiquitous and sequester metals in wetland soils; however, the mechanisms of metal sequestration are unresolved. Thus, characterizing the Fe plaque and associated metals will aid in understanding and predicting metal cycling in wetland ecosystems. Accordingly, microscopic and spectroscopic techniques were utilized to identify the spatial distributions, associations, and chemical environments of Fe, Mn, Pb, and Zn on the roots of a common, indigenous wetland plant (Phalaris arundinacea). Iron forms a continuous precipitate on the root surface, which is composed dominantly of ferrihydrite (ca. 63%) with lesser amounts of goethite (32%) and minor levels of siderite (5%). Although Pb is juxtaposed with Fe on the root surface, it is complexed to organic functional groups, consistent with those of bacterial biofilms. In contrast, Mn and Zn exist as discrete, isolated mixed-metal carbonate (rhodochrosite/hydrozincite) nodules on the root surface. Accordingly, the soil-root interface appears to be a complex biochemical environment, containing both reduced and oxidized mineral species, as well as bacterial-induced organic-metal complexes. As such, hydrated iron oxides, bacterial biofilms, and metal carbonates will influence the availability and mobility of metals within the rhizosphere of aquatic plants.


Assuntos
Ferro/análise , Raízes de Plantas/química , Poaceae/fisiologia , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Disponibilidade Biológica , Carbonatos , Ecossistema , Monitoramento Ambiental , Ferro/química , Metais Pesados/análise , Metais Pesados/química , Mineração , Oxirredução , Eliminação de Resíduos
5.
Environ Sci Technol ; 35(8): 1599-603, 2001 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11329708

RESUMO

The migration of 60Co, dominantly via transport of Co-EDTA complexes, into surface water and groundwater is a recognized concern at many nuclear production and storage sites. Reduction of CoIIIEDTA- to CoIIEDTA2- should decrease the mobility of 60Co in natural environments by stimulating ligand displacement with Fe(III) or Al(III) or by precipitation of CoSx in sulfidic environments. In this study, we examine direct (enzymatic) and indirect (metabolite) reduction processes of CoIIIEDTA- by the sulfate-reducing bacterium Desulfovibrio vulgaris. D. vulgaris reduces CoIIIEDTA- to CoIIEDTA2-, but growth using it as a terminal electron acceptor was not demonstrated. Rather than acting as a competing electron acceptor and limiting cobalt reduction, introducing sulfate with D. vulgaris enhances the reduction of CoIIIEDTA- as a result of sulfide production. Sulfide reduces CoIIIEDTA- in a pathway involving polysulfide formation and leads to a CoS precipitate. Thus, both direct and indirect (i.e., through the production of sulfide) microbial reduction pathways of CoIIIEDTA- may help to retard its migration within soils and waters.


Assuntos
Cobalto/metabolismo , Desulfovibrio vulgaris/metabolismo , Ácido Edético/metabolismo , Sulfetos/metabolismo , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Oxirredução , Sulfatos/metabolismo
6.
Environ Sci Technol ; 35(3): 522-7, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11351723

RESUMO

Chromate is a priority pollutant within the U.S. and many other countries, the hazard of which can be mitigated by reduction to the trivalent form of chromium. Here we elucidate the reduction of Cr(VI) to Cr(III) via a closely coupled, biotic-abiotic reductive pathway under iron-reducing conditions. Injection of chromate into stirred-flow reactors containing Shewanella alga strain BrY and iron (hydr)oxides of varying stabilities results in complete reduction to Cr(III). The maximum sustainable Cr(VI) reduction rate was 5.5 micrograms CrVI.mg-cell-1.h-1 within ferric (hydr)oxide suspensions (surface area 10 m2). In iron limited systems (having HEPES as a buffer), iron was cycled suggesting it acts in a catalytic-type manner for the bacterial reduction of Cr(VI). BrY also reduced Cr(VI) directly; however, the rate of direct (enzymatic) reduction is considerably slower than by Fe(II)(aq) and is inhibited within 20 h due to chromate toxicity. Thus, dissimilatory iron reduction may provide a primary pathway for the sequestration and detoxification of chromate in anaerobic soils and water.


Assuntos
Cromatos/química , Ferro/química , Shewanella/fisiologia , Poluentes do Solo/análise , Cromo/química , Oxirredução
7.
Appl Environ Microbiol ; 66(5): 1788-95, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10788340

RESUMO

Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80 degrees C and 5, respectively; and the K(m) was 374 microM, with a V(max) of 1.72 micromol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50 degrees C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.


Assuntos
Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Pseudomonas putida/enzimologia , Biodegradação Ambiental , Cromatos/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Cinética , Ultracentrifugação
8.
Appl Environ Microbiol ; 66(1): 154-62, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10618217

RESUMO

Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg(-1), suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter(-1)) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe(3)O(4)), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg(-1). Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 x 10(5) cells g (dry weight) of sediment(-1). Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/fisiologia , Compostos Férricos/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Mineração , Meios de Cultura , DNA Bacteriano/genética , DNA Ribossômico/genética , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/química , Idaho , Ferro/análise , Dados de Sequência Molecular , Oxirredução , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...